Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Org Chem ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38655880

RESUMEN

A novel synthesis of sitagliptin based on a redox-active ester derived from the chiral pool is reported. The key step is an electrochemical nickel-catalyzed sp2-sp3 cross-coupling reaction using inexpensive nickel foam in an undivided cell. It was successfully applied to 21 examples in up to 88% yield. These sitagliptin-analogue precursors could potentially interact with the DPP4 enzyme. A full synthesis based on our new reaction pathway provided sitagliptin in an overall yield of 33%.

2.
Chemistry ; : e202400403, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38527230

RESUMEN

An intramolecular electrochemical dehydration reaction of dicarboxylic acids to their cyclic anhydrides is presented. This electrolysis allows dicarboxylic acids as naturally abundant, inexpensive, safe, and readily available starting materials to be transformed into carboxylic anhydrides under mild reaction conditions. No conventional dehydration reagent is required. The obtained cyclic anhydrides are highly valuable reagents in organic synthesis, and in this report, we use them in-situ for acylation reactions of amines to synthesize amides. This work is part of the recent progress in electrochemical dehydration, which - in contrast to electrochemical dehydrogenative reactions for example - is an underexplored field of research. The reaction mechanism was investigated by 18O isotope labeling, revealing the formation of sulfate by electrochemical oxidation and hydrolysis of the thiocyanate-supporting electrolyte. This transformation is not a classical Kolbe electrolysis, because it is non-decarboxylative, and all carbon atoms of the carboxylic acid starting material are contained in the carboxylic anhydride. In total, 20 examples are shown with NMR yields up to 71 %.

3.
Org Lett ; 26(10): 2129-2134, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38446080

RESUMEN

A dynamic thermodynamic resolution method for converting (R/S)-BINOL (1,1'-binaphthyl-2,2'-diol) into (R)-BINOL in 100% theoretical yield is reported. This technique involves mixing (R/S)-BINOL with N-benzyl cinchonidinium bromide (1 equiv) and a [Cu2(tmeda)2(µ-OH)2]Br2 (2.5 mol %) redox catalyst in acetonitrile. In the background of this process is the observation that the energy for atropoisomerization decreases significantly when an electron is removed from BINOL. Therefore, it is possible to convert both enantiomers into the thermodynamically favorable [N-benzyl cinchonidinium bromide·(R)-BINOL] adduct.

4.
Org Lett ; 26(8): 1607-1611, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38364789

RESUMEN

Electrochemically generated green platform oxidizers like peroxodicarbonate (PODIC) constitute a game-changing technology in terms of sustainable chemistry while serving as an alternative counterreaction in the electrochemical hydrogen evolution. Peroxodicarbonate avoids the storage and shipping of concentrated hydrogen peroxide solution. We herein disclose an efficient method for the N-oxidation of quinolines, pyridines, and complex tertiary amines. The use of phenoyloxy succinimide (POSI) is the decisive factor for obtaining N-oxides (28 examples) in isolated yields of up to 98%.

5.
Chemistry ; 30(21): e202400557, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38335153

RESUMEN

A novel electrochemical approach to access alkyl alkenesulfonates via a multicomponent reaction was developed. The metal-free method features easy-to-use SO2 stock solution forming monoalkylsulfites from alcohols with an auxiliary base in-situ. These intermediates serve a dual role as starting materials and as supporting electrolyte enabling conductivity. Anodic oxidation of the substrate styrene, radical addition of these monoalkylsulfites and consecutive second oxidation and deprotonation preserve the double bond and form alkyl ß-styrenesulfonates in a highly regio- and stereoselective fashion. The feasibility of this electrosynthetic method is demonstrated in 44 examples with yields up to 81 %, employing various styrenes and related substrates as well as a diverse set of alcohols. A gram-scale experiment underlines the applicability of this process, which uses inexpensive and readily available electrode materials.

6.
ChemSusChem ; 17(8): e202301721, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38180119

RESUMEN

Important improvements have been achieved in developing the coupling of electrochemical CO2 reduction to formate with its subsequent microbial conversion to polyhydroxybutyrate (PHB) by Cupriavidus necator. The CO2 based formate electrosynthesis was optimised by electrolysis parameter adjustment and application of Sn based gas diffusion electrodes reaching almost 80 % Faradaic efficiency at 150 mA cm-2. Thereby, catholyte with the high formate concentration of 441±9 mmol L-1 was generated as feedstock without intermediate downstream processing for semi-automated formate feeding into a fed-batch reactor system. Moreover, microbial formate conversion to PHB was studied further, optimised, and successfully scaled from shake flasks to semi-automated bioreactors. Therein, a PHB per formate ratio of 16.5±4.0 mg g-1 and a PHB synthesis rate of 8.4±2.1 mg L-1 OD-1 h-1 were achieved. By this process combination, an almost doubled overall process yield of 22.3±5.5 % was achieved compared to previous reports. The findings allow a detailed evaluation of the overall CO2 to PHB conversion, providing the basis for potential technical exploitation.

7.
Bioorg Med Chem Lett ; 100: 129614, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38199329

RESUMEN

Electrochemical transformations are a subject of increasing interest in early drug discovery due to its ability to assemble complex scaffolds under rather mild reaction conditions. In this context, we became interested in electrochemical decarboxylative cross-coupling (DCC) protocols of redox-active esters (RAEs) and halo(hetero)arenes. Starting with the one-step electrochemical synthesis of novel methylamino-substituted heterocycles we recognized the potential of this methodology to deliver a novel approach to ß- and γ- amino acids by starting from the corresponding RAEs. Our work finally resulted in the delivery of novel and highly valuable trifunctional building blocks based on ß- and γ-amino-acid scaffolds.


Asunto(s)
Aminoácidos , Ésteres , Electroquímica , Estructura Molecular , Aminoácidos/química , Ésteres/química , Oxidación-Reducción
8.
Org Lett ; 26(14): 2790-2794, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37805940

RESUMEN

A novel electrosynthetic approach to aryl dibenzothiophenium salts, including the direct intramolecular formation of a C-S bond in a metal-free, electrochemical key step under ambient conditions, is reported. The broad applicability of this method is demonstrated with 14 examples, including nitrogen-containing heterocycles in isolated yields up to 72%. The resulting sulfonium salts can be used as precursors for fluorine labeling to give [18F]fluoroarenes as found in PET tracer ligands.

9.
Chemistry ; 30(7): e202303388, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38018461

RESUMEN

Electrochemically generated hypervalent iodine(III) species are powerful reagents for oxidative C-N coupling reactions, providing access to valuable N-heterocycles. A new electrocatalytic hypervalent iodine(III)-mediated in-cell synthesis of 1H-N-aryl-3,4-dihydroquinolin-2-ones by dehydrogenative C-N bond formation is presented. Catalytic amounts of the redox mediator, a low supporting electrolyte concentration and recycling of the solvent used make this method a sustainable alternative to electrochemical ex-cell or conventional approaches. Furthermore, inexpensive, readily available electrode materials and a simple galvanostatic set-up are applied. The broad functional group tolerance could be demonstrated by synthesizing 23 examples in yields up to 96 %, with one reaction being performed on a 10-fold higher scale. Based on the obtained results a sound reaction mechanism could be proposed.

10.
Adv Mater ; 36(9): e2307461, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37917032

RESUMEN

Although electro-organic synthesis is currently receiving renewed interest because of its potential to enable sustainability in chemical processes to value-added products, challenges in process development persist: For reductive transformations performed in protic media, an inherent issue is the limited choice of metallic cathode materials that can effectively suppress the parasitic hydrogen evolution reaction (HER) while maintaining a high activity toward the targeted electro-organic reaction. Current development trends are aimed at avoiding the previously used HER-suppressing elements (Cd, Hg, and Pb) because of their toxicity. Here, this work reports the rational design of highly porous foam-type binary and ternary electrocatalysts with reduced Pb content. Optimized cathodes are tested in electro-organic reductions using an oxime to nitrile transformation as a model reaction relevant for the synthesis of fine chemicals. Their electrocatalytic performance is compared with that of the model CuSn7Pb15 bronze alloy that has recently been endorsed as the best cathode replacement for bare Pb electrodes. All developed metal foam catalysts outperform both bare Pb and the CuSn7Pb15 benchmark in terms of chemical yield and energetic efficiency. Moreover, post-electrolysis analysis of the crude electrolyte mixture and the cathode's surfaces through inductively coupled plasma mass spectrometry (ICP-MS) and scanning electron microscopy (SEM), respectively, reveal the foam catalysts' elevated resistance to cathodic corrosion.

11.
Nat Commun ; 14(1): 4565, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37507379

RESUMEN

Direct functionalization of C(sp3)-H bonds allows rapid access to valuable products, starting from simple petrochemicals. However, the chemical transformation of non-activated methylene groups remains challenging for organic synthesis. Here, we report a general electrochemical method for the oxidation of C(sp3)-H and C(sp2)-H bonds, in which cyclic alkanes and (cyclic) olefins are converted into cycloaliphatic ketones as well as aliphatic (di)carboxylic acids. This resource-friendly method is based on nitrate salts in a dual role as anodic mediator and supporting electrolyte, which can be recovered and recycled. Reducing molecular oxygen as a cathodic counter reaction leads to efficient convergent use of both electrode reactions. By avoiding transition metals and chemical oxidizers, this protocol represents a sustainable oxo-functionalization method, leading to a valuable contribution for the sustainable conversion of petrochemical feedstocks into synthetically usable fine chemicals and commodities.

12.
Chem Asian J ; 18(14): e202300380, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37269542

RESUMEN

With LABS, an open source Python-based lab software is established that enables users to orchestrate automated synthesis setups. The software consists of a user-friendly interface for data input and system monitoring. A flexible backend architecture enables the integration of multiple lab devices. The software allows users to easily modify experimental parameters or routines and switch between different lab devices. Compared to previously published projects, we aim to provide a more widely applicable and easily customizable automation software for any experimental setup. The usefulness of this tool was demonstrated in the oxidative coupling of 2,4-dimethyl-phenol to the corresponding 2,2'-biphenol. In this context, the suitable electrolysis parameters for flow electrolysis were optimized by way of design of experiments.

13.
Org Biomol Chem ; 21(22): 4694-4701, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37222499

RESUMEN

Pyrazoles are a very important structural motif widely found in pharmaceuticals and agrochemicals. An electrochemically enabled approach for the sustainable synthesis of pyrazoles via oxidative aromatization of pyrazolines is presented. Inexpensive sodium chloride is employed in a dual role as a redox mediator and supporting electrolyte in a biphasic system (aqueous/organic). The method is applicable to a broad scope and can be conducted in the simplest electrolysis set-up using carbon-based electrodes. Hence, the method allows for simple work-up strategies such as extraction and crystallization, which enables application of this green synthetic route on a technically relevant scale. This is underlined by demonstration of a multi-gram scale electrolysis without loss in yield.

14.
Angew Chem Int Ed Engl ; 62(24): e202301512, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37032318

RESUMEN

We have studied the highly selective homogeneous iridium-catalyzed hydrogen isotope exchange (HIE) with deuterium or tritium gas as an isotope source in water and buffers. With an improved water-soluble Kerr-type catalyst, we have achieved the first insight into applying HIE reactions in aqueous media with varying pH. Density functional theory (DFT) calculations gave consistent insights in the calculated energies of transition states and coordination complexes, further explaining the observed reactivity and guidance on the scope and limitations for HIE reactions in water. Finally, we successfully adapted these findings to tritium chemistry.

15.
JACS Au ; 3(2): 575-583, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36873686

RESUMEN

Herein, we describe an electrochemical pathway for the synthesis of sulfilimines, sulfoximines, sulfinamidines, and sulfinimidate esters from readily available low-valent sulfur compounds and primary amides or their analogues. The combination of solvents and supporting electrolytes together act both as an electrolyte as well as a mediator, leading to efficient use of reactants. Both can be easily recovered, enabling an atom-efficient and sustainable process. A broad scope of sulfilimines, sulfinamidines, and sulfinimidate esters with N-EWGs is accessed in up to excellent yields with broad functional group tolerance. This fast synthesis can be easily scaled up to multigram quantities with high robustness for fluctuation of current densities of up to 3 orders of magnitude. The sulfilimines are converted into the corresponding sulfoximines in an ex-cell process in high to excellent yields using electro-generated peroxodicarbonate as a green oxidizer. Thereby, preparatively valuable NH sulfoximines are accessible.

16.
Chem Sci ; 14(10): 2669-2675, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36908965

RESUMEN

Cathodic synthesis provides sustainable access to 1-hydroxy- and 1-oxy-quinazolin-4-ones from easily accessible nitro starting materials. Mild reaction conditions, inexpensive and reusable carbon-based electrode materials, an undivided electrochemical setup, and constant current conditions characterise this method. Sulphuric acid is used as a simple supporting electrolyte as well as a catalyst for cyclisation. The broad applicability of this protocol is demonstrated in 27 differently substituted derivatives in high yields of up to 92%. Moreover, mechanistic studies based on cyclic voltammetry measurements highlight a selective reduction of the nitro substrate to hydroxylamine as a key step. The relevance for preparative applications is demonstrated by a 100-fold scale-up for gram-scale electrolysis.

17.
ChemSusChem ; 16(8): e202202300, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36651115

RESUMEN

A sustainable electrochemical pathway for degradation and thermal treatment of technical lignosulfonate is presented. This approach is an opportunity to produce remarkable quantities of low molecular weight compounds, such as vanillin and acetovanillone. For the electrochemical degradation, a simple two-electrode arrangement in aqueous media is used, which is also easily scalable. The oxidation of the biopolymer occurs at the anode whereas hydrogen is evolved at the cathode. The subsequent thermal treatment supports the degradation of the robust chemical structure of lignosulfonates. With optimized electrolytic conditions, vanillin could be obtained in 9.7 wt% relative to the dry mass of lignosulfonate used. Aside from vanillin, by-products such as acetovanillone or vanillic acid were observed in lower yields. A new and reliable one-pot, two-step degradation of different technically relevant lignosulfonates is established with the advantages of using electrons as an oxidizing agent, which results in low quantities of reagent waste.

18.
Angew Chem Int Ed Engl ; 62(14): e202219217, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36719064

RESUMEN

Lignin, the world's largest resource of renewable aromatics, with annually roughly 50 million tons of accruing technical lignin, mainly Kraft lignin, is highly underdeveloped regarding the production of monoaromatics. We demonstrate the oxidative depolymerization of Kraft lignin at 180 °C to produce vanillin 1 in yields up to 6.2 wt % and 92 % referred to the maximum yield gained from the quantification reaction utilizing nitrobenzene. Using peroxodicarbonate (C2 O6 2- ) as "green" oxidizer for the degradation, toxic and/or harmful reagents are prevented. Also, the formed waste can serve as makeup chemical in the pulping process. Na2 C2 O6 is synthesized in an ex-cell electrolysis of aqueous Na2 CO3 at BDD anodes, achieving a yield of Na2 C2 O6 with 41 %. At least, the oxidation and degradation of Kraft lignin is analysis via UV/Vis and NMR spectroscopy.

19.
Chemistry ; 29(12): e202203319, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36426660

RESUMEN

The use of electric current in synthetic organic chemistry offers a sustainable tool for the selective reductive synthesis of quinoline N-oxides starting from easily accessible nitro compounds. The reported method employs mild and reagent-free conditions, a simple undivided cell, and constant current electrolysis set-up which provides conversion with a high atom economy. The synthesis of 30 differently substituted quinoline N-oxides was successfully performed in up to 90 % yield. Using CV studies, the mechanism of the selective formation of the quinoline N-oxides was elucidated. The technical relevance of the described reaction could be shown in a 50-fold scale-up reaction.

20.
Angew Chem Int Ed Engl ; 62(2): e202213630, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36336662

RESUMEN

Shuttle hetero-difunctionalization reaction, in which two chemically distinct functional groups are transferred between two molecules, has long been an unmet goal due to the daunting challenges in controlling the chemo-, regio-, and stereoselectivity. Herein, we disclose an electrochemistry enabled shuttle reaction (e-shuttle) to selectively transfer one RS- and one X- group between ß-halosulfides and unsaturated hydrocarbons via a consecutive paired electrolysis mechanism. The preferential anodic oxidation of one anion over the other, which is controlled by their distinct redox potentials, plays a pivotal role in controlling the high chemoselectivity of the process. This easily scalable methodology enables the construction of a myriad of densely functionalized ß-halo alkenyl sulfides in unprecedented chemo-, regio-, and stereoselectivity using benign surrogates, e.g., 2-bromoethyl sulfide, avoiding the handling of corrosive and oxidative RS-Br reagents. In a broader context, these results open up new strategies for selective shuttle difunctionalization reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...